Copied to
clipboard

G = C3×C426C4order 192 = 26·3

Direct product of C3 and C426C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C426C4, C429C12, M4(2)⋊2C12, C12.27C42, C4⋊C43C12, C6.26C4≀C2, (C4×C12)⋊16C4, C4.1(C4×C12), C12.51(C4⋊C4), (C2×C12).69Q8, (C2×C12).506D4, (C3×M4(2))⋊8C4, (C2×C42).10C6, C23.36(C3×D4), C42⋊C2.2C6, (C22×C6).151D4, (C2×M4(2)).6C6, (C6×M4(2)).18C2, C12.110(C22⋊C4), C6.23(C2.C42), (C22×C12).570C22, C4.2(C3×C4⋊C4), (C3×C4⋊C4)⋊10C4, C2.3(C3×C4≀C2), (C2×C4×C12).30C2, C22.3(C3×C4⋊C4), (C2×C4).12(C3×Q8), (C2×C6).20(C4⋊C4), (C2×C4).65(C2×C12), (C2×C4).142(C3×D4), C4.25(C3×C22⋊C4), (C2×C12).260(C2×C4), (C2×C6).71(C22⋊C4), (C22×C4).110(C2×C6), C22.28(C3×C22⋊C4), C2.4(C3×C2.C42), (C3×C42⋊C2).16C2, SmallGroup(192,145)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C426C4
C1C2C22C23C22×C4C22×C12C3×C42⋊C2 — C3×C426C4
C1C2C4 — C3×C426C4
C1C2×C12C22×C12 — C3×C426C4

Generators and relations for C3×C426C4
 G = < a,b,c,d | a3=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=c-1 >

Subgroups: 170 in 110 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C24, C2×C12, C2×C12, C22×C6, C2×C42, C42⋊C2, C2×M4(2), C4×C12, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C22×C12, C426C4, C2×C4×C12, C3×C42⋊C2, C6×M4(2), C3×C426C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C4≀C2, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C426C4, C3×C2.C42, C3×C4≀C2, C3×C426C4

Smallest permutation representation of C3×C426C4
On 48 points
Generators in S48
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 44 40)(26 41 37)(27 42 38)(28 43 39)(29 35 48)(30 36 45)(31 33 46)(32 34 47)
(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 6 2 5)(3 8 4 7)(9 14 10 13)(11 16 12 15)(17 22 18 21)(19 24 20 23)(25 28 27 26)(29 32 31 30)(33 36 35 34)(37 40 39 38)(41 44 43 42)(45 48 47 46)
(1 35 3 25)(2 33 4 27)(5 34 7 28)(6 36 8 26)(9 29 11 40)(10 31 12 38)(13 32 15 39)(14 30 16 37)(17 48 19 44)(18 46 20 42)(21 47 23 43)(22 45 24 41)

G:=sub<Sym(48)| (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,44,40)(26,41,37)(27,42,38)(28,43,39)(29,35,48)(30,36,45)(31,33,46)(32,34,47), (25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,6,2,5)(3,8,4,7)(9,14,10,13)(11,16,12,15)(17,22,18,21)(19,24,20,23)(25,28,27,26)(29,32,31,30)(33,36,35,34)(37,40,39,38)(41,44,43,42)(45,48,47,46), (1,35,3,25)(2,33,4,27)(5,34,7,28)(6,36,8,26)(9,29,11,40)(10,31,12,38)(13,32,15,39)(14,30,16,37)(17,48,19,44)(18,46,20,42)(21,47,23,43)(22,45,24,41)>;

G:=Group( (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,44,40)(26,41,37)(27,42,38)(28,43,39)(29,35,48)(30,36,45)(31,33,46)(32,34,47), (25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,6,2,5)(3,8,4,7)(9,14,10,13)(11,16,12,15)(17,22,18,21)(19,24,20,23)(25,28,27,26)(29,32,31,30)(33,36,35,34)(37,40,39,38)(41,44,43,42)(45,48,47,46), (1,35,3,25)(2,33,4,27)(5,34,7,28)(6,36,8,26)(9,29,11,40)(10,31,12,38)(13,32,15,39)(14,30,16,37)(17,48,19,44)(18,46,20,42)(21,47,23,43)(22,45,24,41) );

G=PermutationGroup([[(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,44,40),(26,41,37),(27,42,38),(28,43,39),(29,35,48),(30,36,45),(31,33,46),(32,34,47)], [(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,6,2,5),(3,8,4,7),(9,14,10,13),(11,16,12,15),(17,22,18,21),(19,24,20,23),(25,28,27,26),(29,32,31,30),(33,36,35,34),(37,40,39,38),(41,44,43,42),(45,48,47,46)], [(1,35,3,25),(2,33,4,27),(5,34,7,28),(6,36,8,26),(9,29,11,40),(10,31,12,38),(13,32,15,39),(14,30,16,37),(17,48,19,44),(18,46,20,42),(21,47,23,43),(22,45,24,41)]])

84 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E···4N4O4P4Q4R6A···6F6G6H6I6J8A8B8C8D12A···12H12I···12AB12AC···12AJ24A···24H
order1222223344444···444446···66666888812···1212···1212···1224···24
size1111221111112···244441···1222244441···12···24···44···4

84 irreducible representations

dim1111111111111122222222
type+++++-+
imageC1C2C2C2C3C4C4C4C6C6C6C12C12C12D4Q8D4C3×D4C3×Q8C3×D4C4≀C2C3×C4≀C2
kernelC3×C426C4C2×C4×C12C3×C42⋊C2C6×M4(2)C426C4C4×C12C3×C4⋊C4C3×M4(2)C2×C42C42⋊C2C2×M4(2)C42C4⋊C4M4(2)C2×C12C2×C12C22×C6C2×C4C2×C4C23C6C2
# reps11112444222888211422816

Matrix representation of C3×C426C4 in GL3(𝔽73) generated by

6400
080
008
,
7200
010
01327
,
100
0270
04646
,
2700
07271
001
G:=sub<GL(3,GF(73))| [64,0,0,0,8,0,0,0,8],[72,0,0,0,1,13,0,0,27],[1,0,0,0,27,46,0,0,46],[27,0,0,0,72,0,0,71,1] >;

C3×C426C4 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes_6C_4
% in TeX

G:=Group("C3xC4^2:6C4");
// GroupNames label

G:=SmallGroup(192,145);
// by ID

G=gap.SmallGroup(192,145);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,3027,248,6053]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽